手机
当前位置:查字典教程网 >编程开发 >mysql数据库 >MySQL在关联复杂情况下所能做出的一些优化
MySQL在关联复杂情况下所能做出的一些优化
摘要:昨天处理了一则复杂关联SQL的优化,这类SQL的优化往往考虑以下四点:第一.查询所返回的结果集,通常查询返回的结果集很少,是有信心进行优化的...

昨天处理了一则复杂关联SQL的优化,这类SQL的优化往往考虑以下四点:

第一.查询所返回的结果集,通常查询返回的结果集很少,是有信心进行优化的;

第二.驱动表的选择至关重要,通过查看执行计划,可以看到优化器选择的驱动表,从执行计划中的rows可以大致反映出问题的所在;

第三.理清各表之间的关联关系,注意关联字段上是否有合适的索引;

第四.使用straight_join关键词来强制表之间的关联顺序,可以方便我们验证某些猜想;

SQL:

执行时间:

mysql> select c.yh_id, -> c.yh_dm, -> c.yh_mc, -> c.mm, -> c.yh_lx, -> a.jg_id, -> a.jg_dm, -> a.jg_mc, -> a.jgxz_dm, -> d.js_dm yh_js -> from a, b, c -> left join d on d.yh_id = c.yh_id -> where a.jg_id = b.jg_id -> and b.yh_id = c.yh_id -> and a.yx_bj = ‘Y' -> and c.sc_bj = ‘N' -> and c.yx_bj = ‘Y' -> and c.sc_bj = ‘N' -> and c.yh_dm = '006939748XX' ; 1 row in set (0.75 sec)

这条SQL查询实际只返回了一行数据,但却执行耗费了750ms,查看执行计划:

mysql> explain -> select c.yh_id, -> c.yh_dm, -> c.yh_mc, -> c.mm, -> c.yh_lx, -> a.jg_id, -> a.jg_dm, -> a.jg_mc, -> a.jgxz_dm, -> d.js_dm yh_js -> from a, b, c -> left join d on d.yh_id = c.yh_id -> where a.jg_id = b.jg_id -> and b.yh_id = c.yh_id -> and a.yx_bj = ‘Y' -> and c.sc_bj = ‘N' -> and c.yx_bj = ‘Y' -> and c.sc_bj = ‘N' -> and c.yh_dm = '006939748XX' ; +—-+————-+——-+——–+——————+———+———+————–+——-+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——–+——————+———+———+————–+——-+————-+ | 1 | SIMPLE | a | ALL | PRIMARY,INDEX_JG | NULL | NULL | NULL | 52616 | Using where | | 1 | SIMPLE | b | ref | PRIMARY | PRIMARY | 98 | test.a.JG_ID | 1 | Using index | | 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 98 | test.b.YH_ID | 1 | Using where | | 1 | SIMPLE | d | index | NULL | PRIMARY | 196 | NULL | 54584 | Using index | +—-+————-+——-+——–+——————+———+———+————–+——-+————-+

可以看到执行计划中有两处比较显眼的性能瓶颈:

| 1 | SIMPLE | a | ALL | PRIMARY,INDEX_JG | NULL | NULL | NULL | 52616 | Using where | | 1 | SIMPLE | d | index | NULL | PRIMARY | 196 | NULL | 54584 | Using index |

由于d是left join的表,所以驱动表不会选择d表,我们在来看看a,b,c三表的大小:

mysql> select count(*) from c; +———-+ | count(*) | +———-+ | 53731 | +———-+ mysql> select count(*) from a; +———-+ | count(*) | +———-+ | 53335 | +———-+ mysql> select count(*) from b; +———-+ | count(*) | +———-+ | 105809 | +———-+

由于b表的数据量大于其他的两表,同时b表上基本没有查询过滤条件,所以驱动表选择B的可能排除;

优化器实际选择了a表作为驱动表,而为什么不是c表作为驱动表?我们来分析一下:

第一阶段:a表作为驱动表

a–>b–>c–>d:

(1):a.jg_id=b.jg_id—>(b索引:PRIMARY KEY (`JG_ID`,`YH_ID`) )

(2):b.yh_id=c.yh_id—>(c索引:PRIMARY KEY (`YH_ID`))

(3):c.yh_id=d.yh_id—>(d索引:PRIMARY KEY (`JS_DM`,`YH_ID`))

由于d表上没有yh_id的索引,索引在d表上添加索引:

alter table d add index ind_yh_id(yh_id);

执行计划:

+—-+————-+——-+——–+——————+———–+———+————–+——-+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——–+——————+———–+———+————–+——-+————-+ | 1 | SIMPLE | a | ALL | PRIMARY,INDEX_JG | NULL | NULL | NULL | 52616 | Using where | | 1 | SIMPLE | b | ref | PRIMARY | PRIMARY | 98 | test.a.JG_ID | 1 | Using index | | 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 98 | test.b.YH_ID | 1 | Using where | | 1 | SIMPLE | d | ref | ind_yh_id | ind_yh_id | 98 | test.b.YH_ID | 272 | Using index | +—-+————-+——-+——–+——————+———–+———+————–+——-+————-+

执行时间:

1 row in set (0.77 sec)

在d表上添加索引后,d表的扫描行数下降到272行(最开始为:54584 )

| 1 | SIMPLE | d | ref | ind_yh_id | ind_yh_id | 98 | test.b.YH_ID | 272 | Using index |

第二阶段:c表作为驱动表

d

^

|

c–>b–>a

由于在c表上有yh_dm过滤性很高的筛选条件,所以我们在yh_dm上创建一个索引:

mysql> select count(*) from c where yh_dm = '006939748XX'; +———-+ | count(*) | +———-+ | 2 | +———-+

添加索引:

alter table c add index ind_yh_dm(yh_dm)

查看执行计划:

+—-+————-+——-+——–+——————-+———–+———+————–+——-+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——–+——————-+———–+———+————–+——-+————-+ | 1 | SIMPLE | a | ALL | PRIMARY,INDEX_JG | NULL | NULL | NULL | 52616 | Using where | | 1 | SIMPLE | b | ref | PRIMARY | PRIMARY | 98 | test.a.JG_ID | 1 | Using index | | 1 | SIMPLE | c | eq_ref | PRIMARY,ind_yh_dm | PRIMARY | 98 | test.b.YH_ID | 1 | Using where | | 1 | SIMPLE | d | ref | ind_yh_id | ind_yh_id | 98 | test.b.YH_ID | 272 | Using index | +—-+————-+——-+——–+——————-+———–+———+————–+——-+————-+

执行时间:

1 row in set (0.74 sec)

在c表上添加索引后,索引还是没有走上,执行计划还是以a表作为驱动表,所以我们这里来分析一下为什么还是以a表作为驱动表?

1):c.yh_id=b.yh_id—>( PRIMARY KEY (`JG_ID`,`YH_ID`) )

a.如果以c表为驱动表,则c表与b表在关联的时候,由于在b表没有yh_id字段的索引,由于b表的数据量很大,所以优化器认为这里如果以c表作为驱动表,则会与b表产生较大的关联(这里可以使用straight_join强制使用c表作为驱动表);

b.如果以a表为驱动表,则a表与b表在关联的时候,由于在b表上有jg_id字段的索引,所以优化器认为以a作为驱动表的代价是小于以c作为驱动板的代价;

所以我们如果要以C表为驱动表,只需要在b上添加yh_id的索引:

alter table b add index ind_yh_id(yh_id);

2):b.jg_id=a.jg_id—>( PRIMARY KEY (`JG_ID`) )

3):c.yh_id=d.yh_id—>( KEY `ind_yh_id` (`YH_ID`) )

执行计划:

+—-+————-+——-+——–+——————-+———–+———+————–+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——–+——————-+———–+———+————–+——+————-+ | 1 | SIMPLE | c | ref | PRIMARY,ind_yh_dm | ind_yh_dm | 57 | const | 2 | Using where | | 1 | SIMPLE | d | ref | ind_yh_id | ind_yh_id | 98 | test.c.YH_ID | 272 | Using index | | 1 | SIMPLE | b | ref | PRIMARY,ind_yh_id | ind_yh_id | 98 | test.c.YH_ID | 531 | Using index | | 1 | SIMPLE | a | eq_ref | PRIMARY,INDEX_JG | PRIMARY | 98 | test.b.JG_ID | 1 | Using where | +—-+————-+——-+——–+——————-+———–+———+————–+——+————-+

执行时间:

1 row in set (0.00 sec)

可以看到执行计划中的rows已经大大降低,执行时间也由原来的750ms降低到0 ms级别;

【MySQL在关联复杂情况下所能做出的一些优化】相关文章:

MySQL索引背后的之使用策略及优化(高性能索引策略)

MySQL单表多关键字模糊查询的实现方法

MySQL将表a中查询的数据插入到表b中

MYSQL建立外键失败几种情况记录Can't create table不能创建表

MySQL服务器安装完之后如何调节性能

MySQL 创建主键,外键和复合主键的语句

MySQL 分表优化试验代码

MySQL延迟关联性能优化方法

MySQL 建表的优化策略 小结

MySQL 获得当前日期时间的函数小结

精品推荐
分类导航