手机
当前位置:查字典教程网 >编程开发 >mysql数据库 >mysql实现本地keyvalue数据库缓存示例
mysql实现本地keyvalue数据库缓存示例
摘要:Key-Value缓存有很多,用的较多的是memcache、redis,他们都是以独立服务的形式运行,在工作中有时需要嵌入一个本地的key-...

Key-Value缓存有很多,用的较多的是memcache、redis,他们都是以独立服务的形式运行,在工作中有时需要嵌入一个本地的key-value缓存,当然已经有LevelDb等,但感觉还是太重量级了。

本文实现了一种超级轻量的缓存,

1、实现代码仅仅需要400行;

2、性能高效,value长度在1K时测试速度在每秒200万左右

3、缓存是映射到文件中的,所以没有malloc、free的开销,以及带来的内存泄露、内存碎片等;

4、如果服务挂掉了,重启后缓存内容继续存在;

5、如果把缓存映射到磁盘文件就算机器挂了,缓存中内容还是会存在,当然有可能会出现数据损坏的情况;

6、一定程度上实现了LRU淘汰算法,实现的LRU不是全局的只是一条链上的,所以只能说在一定程序上实现了;

7、稳定,已经在多个项目中运用,线上部署的机器有几十台,运行了大半年了没出过问题;

8、普通的缓存key、value都是字符串的形式,此缓存的key、value都可以是class、struct对象结构使用更方便;

老规矩直接上代码:

复制代码 代码如下:

template<typename K, typename V>

class HashTable

{

public:

HashTable(const char *tablename, uint32_t tableLen, uint32_t nodeTotal);

virtual ~HashTable();

bool Add(K &key, V &value)

{

AutoLock autoLock(m_MutexLock);

//check is exist

uint32_t nodeId = GetIdByKey(key);

if(nodeId != m_InvalidId) return false;

nodeId = GetFreeNode();

if(nodeId == m_InvalidId) return false;

uint32_t hashCode = key.HashCode();

Entry *tmpNode = m_EntryAddr + nodeId;

tmpNode->m_Key = key;

tmpNode->m_Code = hashCode;

tmpNode->m_Value = value;

uint32_t index = hashCode % m_HeadAddr->m_TableLen;

AddNodeToHead(index, nodeId);

return true;

}

bool Del(K &key)

{

AutoLock autoLock(m_MutexLock);

uint32_t nodeId = GetIdByKey(key);

if(nodeId == m_InvalidId) return false;

uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;

return RecycleNode(index, nodeId);

}

bool Set(K &key, V &value)

{

AutoLock autoLock(m_MutexLock);

uint32_t nodeId = GetIdByKey(key);

if(nodeId == m_InvalidId) return false;

(m_EntryAddr + nodeId)->m_Value = value;

return true;

}

bool Get(K &key, V &value)

{

AutoLock autoLock(m_MutexLock);

uint32_t nodeId = GetIdByKey(key);

if(nodeId == m_InvalidId) return false;

value = (m_EntryAddr + nodeId)->m_Value;

return true;

}

bool Exist(K &key)

{

AutoLock autoLock(m_MutexLock);

uint32_t nodeId = GetIdByKey(key);

if(nodeId == m_InvalidId) return false;

return true;

}

uint32_t Count()

{

AutoLock autoLock(m_MutexLock);

return m_HeadAddr->m_UsedCount;

}

//if exist set else add

bool Replace(K &key, V &value)

{

AutoLock autoLock(m_MutexLock);

if(Exist(key)) return Set(key, value);

else return Add(key, value);

}

/***********************************************

****LRU: when visit a node, move it to head ****

************************************************/

//if no empty place,recycle tail

bool LruAdd(K &key, V &value, K &recyKey, V &recyValue, bool &recycled)

{

AutoLock autoLock(m_MutexLock);

if(Exist(key)) return false;

if(Add(key, value)) return true;

uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;

uint32_t tailId = GetTailNodeId(index);

if(tailId == m_InvalidId) return false;

Entry *tmpNode = m_EntryAddr + tailId;

recyKey = tmpNode->m_Key;

recyValue = tmpNode->m_Value;

recycled = true;

RecycleNode(index, tailId);

return Add(key, value);

}

bool LruSet(K &key, V &value)

{

AutoLock autoLock(m_MutexLock);

if(Set(key, value)) return MoveToHead(key);

else return false;

}

bool LruGet(K &key, V &value)

{

AutoLock autoLock(m_MutexLock);

if(Get(key, value)) return MoveToHead(key);

else return false;

}

//if exist set else add; if add failed recycle tail than add

bool LruReplace(K &key, V &value, K &recyKey, V &recyValue, bool &recycled)

{

AutoLock autoLock(m_MutexLock);

recycled = false;

if(Exist(key)) return LruSet(key, value);

else return LruAdd(key, value, recyKey, recyValue, recycled);

}

void Clear()

{

AutoLock autoLock(m_MutexLock);

m_HeadAddr->m_FreeBase = 0;

m_HeadAddr->m_RecycleHead = 0;

m_HeadAddr->m_UsedCount = 0;

for(uint32_t i = 0; i < m_HeadAddr->m_TableLen; ++i)

{

(m_ArrayAddr+i)->m_Head = m_InvalidId;

(m_ArrayAddr+i)->m_Tail = m_InvalidId;

}

}

int GetRowKeys(vector<K> &keys, uint32_t index)

{

AutoLock autoLock(m_MutexLock);

if(index >= m_HeadAddr->m_TableLen) return -1;

keys.clear();

keys.reserve(16);

int count = 0;

Array *tmpArray = m_ArrayAddr + index;

uint32_t nodeId = tmpArray->m_Head;

while(nodeId != m_InvalidId)

{

Entry *tmpNode = m_EntryAddr + nodeId;

keys.push_back(tmpNode->m_Key);

nodeId = tmpNode->m_Next;

++count;

}

return count;

}

void *Padding(uint32_t size)

{

AutoLock autoLock(m_MutexLock);

if(size > m_HeadSize - sizeof(TableHead)) return NULL;

else return m_HeadAddr->m_Padding;

}

private:

static const uint32_t m_InvalidId = 0xffffffff;

static const uint32_t m_HeadSize = 1024;

struct TableHead

{

uint32_t m_TableLen;

uint32_t m_NodeTotal;

uint32_t m_FreeBase;

uint32_t m_RecycleHead;

uint32_t m_UsedCount;

char m_TableName[256];

uint32_t m_Padding[0];

};

struct Array

{

uint32_t m_Head;

uint32_t m_Tail;

};

struct Entry

{

V m_Value;

K m_Key;

uint32_t m_Code;

uint32_t m_Next;

uint32_t m_Prev;

};

size_t m_MemSize;

uint8_t *m_MemAddr;

TableHead *m_HeadAddr;

Array *m_ArrayAddr;

Entry *m_EntryAddr;

ThreadMutex m_MutexLock;

bool MoveToHead(K &key);

uint32_t GetIdByKey(K &key);

void AddNodeToHead(uint32_t index, uint32_t nodeId);

bool MoveNodeToHead(uint32_t index, uint32_t nodeId);

bool RecycleNode(uint32_t index, uint32_t nodeId);

uint32_t GetTailNodeId(uint32_t index);

uint32_t GetFreeNode();

DISABLE_COPY_AND_ASSIGN(HashTable);

};

template<typename K, typename V>

HashTable<K, V>::HashTable(const char *tablename, uint32_t tableLen, uint32_t nodeTotal)

{

AbortAssert(tablename != NULL);

m_MemSize = m_HeadSize + tableLen*sizeof(Array) + nodeTotal*sizeof(Entry);

m_MemAddr = (uint8_t*)MemFile::Realloc(tablename, m_MemSize);

AbortAssert(m_MemAddr != NULL);

m_HeadAddr = (TableHead*)(m_MemAddr);

m_ArrayAddr = (Array*)(m_MemAddr + m_HeadSize);

m_EntryAddr = (Entry*)(m_MemAddr + m_HeadSize + tableLen*sizeof(Array));

m_HeadAddr->m_TableLen = tableLen;

m_HeadAddr->m_NodeTotal = nodeTotal;

strncpy(m_HeadAddr->m_TableName, tablename, sizeof(m_HeadAddr->m_TableName));

if(m_HeadAddr->m_UsedCount == 0)//if first use init array to invalid id

{

for(uint32_t i = 0; i < tableLen; ++i)

{

(m_ArrayAddr+i)->m_Head = m_InvalidId;

(m_ArrayAddr+i)->m_Tail = m_InvalidId;

}

m_HeadAddr->m_FreeBase = 0;

m_HeadAddr->m_RecycleHead = 0;

}

}

template<typename K, typename V>

HashTable<K, V>::~HashTable()

{

MemFile::Release(m_MemAddr, m_MemSize);

}

template<typename K, typename V>

bool HashTable<K, V>::MoveToHead(K &key)

{

uint32_t nodeId = GetIdByKey(key);

uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;

return MoveNodeToHead(index, nodeId);

}

template<typename K, typename V>

uint32_t HashTable<K, V>::GetIdByKey(K &key)

{

uint32_t hashCode = key.HashCode();

uint32_t index = hashCode % m_HeadAddr->m_TableLen;

Array *tmpArray = m_ArrayAddr + index;

uint32_t nodeId = tmpArray->m_Head;

while(nodeId != m_InvalidId)

{

Entry *tmpNode = m_EntryAddr + nodeId;

if(tmpNode->m_Code == hashCode && key.Equals(tmpNode->m_Key)) break;

nodeId = tmpNode->m_Next;

}

return nodeId;

}

template<typename K, typename V>

void HashTable<K, V>::AddNodeToHead(uint32_t index, uint32_t nodeId)

{

if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return;

Array *tmpArray = m_ArrayAddr + index;

Entry *tmpNode = m_EntryAddr + nodeId;

if(m_InvalidId == tmpArray->m_Head)

{

tmpArray->m_Head = nodeId;

tmpArray->m_Tail = nodeId;

}

else

{

tmpNode->m_Next = tmpArray->m_Head;

(m_EntryAddr + tmpArray->m_Head)->m_Prev = nodeId;

tmpArray->m_Head = nodeId;

}

}

template<typename K, typename V>

bool HashTable<K, V>::MoveNodeToHead(uint32_t index, uint32_t nodeId)

{

if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return false;

Array *tmpArray = m_ArrayAddr + index;

Entry *tmpNode = m_EntryAddr + nodeId;

//already head

if(tmpArray->m_Head == nodeId)

{

return true;

}

uint32_t nodePrev = tmpNode->m_Prev;

uint32_t nodeNext = tmpNode->m_Next;

(m_EntryAddr+nodePrev)->m_Next = nodeNext;

if(nodeNext != m_InvalidId)

{

(m_EntryAddr+nodeNext)->m_Prev = nodePrev;

}

else

{

tmpArray->m_Tail = nodePrev;

}

tmpNode->m_Prev = m_InvalidId;

tmpNode->m_Next = tmpArray->m_Head;

(m_EntryAddr + tmpArray->m_Head)->m_Prev = nodeId;

tmpArray->m_Head = nodeId;

return true;

}

template<typename K, typename V>

bool HashTable<K, V>::RecycleNode(uint32_t index, uint32_t nodeId)

{

if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return false;

Array *tmpArray = m_ArrayAddr + index;

Entry *tmpNode = m_EntryAddr + nodeId;

uint32_t nodePrev = tmpNode->m_Prev;

uint32_t nodeNext = tmpNode->m_Next;

if(nodePrev != m_InvalidId)

{

(m_EntryAddr + nodePrev)->m_Next = nodeNext;

}

else

{

tmpArray->m_Head = nodeNext;

}

if(nodeNext != m_InvalidId)

{

(m_EntryAddr + nodeNext)->m_Prev = nodePrev;

}

else

{

tmpArray->m_Tail = nodePrev;

}

(m_EntryAddr+nodeId)->m_Next = m_HeadAddr->m_RecycleHead;

m_HeadAddr->m_RecycleHead = nodeId;

--(m_HeadAddr->m_UsedCount);

return true;

}

template<typename K, typename V>

uint32_t HashTable<K, V>::GetTailNodeId(uint32_t index)

{

if(index >= m_HeadAddr->m_TableLen) return m_InvalidId;

Array *tmpArray = m_ArrayAddr + index;

return tmpArray->m_Tail;

}

template<typename K, typename V>

uint32_t HashTable<K, V>::GetFreeNode()

{

uint32_t nodeId = m_InvalidId;

if(m_HeadAddr->m_UsedCount < m_HeadAddr->m_FreeBase)//get from recycle list

{

nodeId = m_HeadAddr->m_RecycleHead;

m_HeadAddr->m_RecycleHead = (m_EntryAddr+nodeId)->m_Next;

++(m_HeadAddr->m_UsedCount);

}

else if(m_HeadAddr->m_UsedCount < m_HeadAddr->m_NodeTotal)//get from free mem

{

nodeId = m_HeadAddr->m_FreeBase;

++(m_HeadAddr->m_FreeBase);

++(m_HeadAddr->m_UsedCount);

}

else

{

nodeId = m_InvalidId;

}

//init node

if(nodeId < m_HeadAddr->m_NodeTotal)

{

Entry *tmpNode = m_EntryAddr + nodeId;

memset(tmpNode, 0, sizeof(Entry));

tmpNode->m_Next = m_InvalidId;

tmpNode->m_Prev = m_InvalidId;

}

return nodeId;

}

【mysql实现本地keyvalue数据库缓存示例】相关文章:

MySql数据分区操作之新增分区操作

mysql数据库子分区教程

mysql如何更新数据库字段教程

mysql 设置查询缓存

mysql数据库KEY分区用法

mysql下完整导出导入实现方法

重命名mysql数据库的五个方法

Mysql启动与数据库的创建方法[图文]

mysql 查询数据库中的存储过程与函数的语句

mysql仿asp的数据库操作类

精品推荐
分类导航