手机
当前位置:查字典教程网 >脚本专栏 >python >35个Python编程小技巧
35个Python编程小技巧
摘要:这篇博客其实就是这个集合整理后一部分的公开亮相。如果你已经是个python大牛,那么基本上你应该知道这里面的大多数用法了,但我想你应该也能发...

这篇博客其实就是这个集合整理后一部分的公开亮相。如果你已经是个python大牛,那么基本上你应该知道这里面的大多数用法了,但我想你应该也能发现一些你不知道的新技巧。而如果你之前是一个c,c++,java的程序员,同时在学习python,或者干脆就是一个刚刚学习编程的新手,那么你应该会看到很多特别有用能让你感到惊奇的实用技巧,就像我当初一样。

每一个技巧和语言用法都会在一个个实例中展示给大家,也不需要有其他的说明。我已经尽力把每个例子弄的通俗易懂,但是因为读者对python的熟悉程度不同,仍然可能难免有一些晦涩的地方。所以如果这些例子本身无法让你读懂,至少这个例子的标题在你后面去google搜索的时候会帮到你。

整个集合大概是按照难易程度排序,简单常见的在前面,比较少见的在最后。

1.1 拆箱

复制代码 代码如下:

>>> a, b, c = 1, 2, 3

>>> a, b, c

(1, 2, 3)

>>> a, b, c = [1, 2, 3]

>>> a, b, c

(1, 2, 3)

>>> a, b, c = (2 * i + 1 for i in range(3))

>>> a, b, c

(1, 3, 5)

>>> a, (b, c), d = [1, (2, 3), 4]

>>> a

1

>>> b

2

>>> c

3

>>> d

4

1.2 拆箱变量交换

复制代码 代码如下:>>> a, b = 1, 2

>>> a, b = b, a

>>> a, b

(2, 1)

1.3 扩展拆箱(只兼容python3)

复制代码 代码如下:>>> a, *b, c = [1, 2, 3, 4, 5]

>>> a

1

>>> b

[2, 3, 4]

>>> c

5

1.4 负数索引

复制代码 代码如下:>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-1]

10

>>> a[-3]

8

1.5 切割列表

复制代码 代码如下:>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[2:8]

[2, 3, 4, 5, 6, 7]

1.6 负数索引切割列表

复制代码 代码如下:>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-4:-2]

[7, 8]

1.7指定步长切割列表

复制代码 代码如下:>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::2]

[0, 2, 4, 6, 8, 10]

>>> a[::3]

[0, 3, 6, 9]

>>> a[2:8:2]

[2, 4, 6]

1.8 负数步长切割列表

复制代码 代码如下:>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::-1]

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> a[::-2]

[10, 8, 6, 4, 2, 0]

1.9 列表切割赋值

复制代码 代码如下:>>> a = [1, 2, 3, 4, 5]

>>> a[2:3] = [0, 0]

>>> a

[1, 2, 0, 0, 4, 5]

>>> a[1:1] = [8, 9]

>>> a

[1, 8, 9, 2, 0, 0, 4, 5]

>>> a[1:-1] = []

>>> a

[1, 5]

1.10 命名列表切割方式

复制代码 代码如下:>>> a = [0, 1, 2, 3, 4, 5]

>>> LASTTHREE = slice(-3, None)

>>> LASTTHREE

slice(-3, None, None)

>>> a[LASTTHREE]

[3, 4, 5]

1.11 列表以及迭代器的压缩和解压缩

复制代码 代码如下:>>> a = [1, 2, 3]

>>> b = ['a', 'b', 'c']

>>> z = zip(a, b)

>>> z

[(1, 'a'), (2, 'b'), (3, 'c')]

>>> zip(*z)

[(1, 2, 3), ('a', 'b', 'c')]

1.12 列表相邻元素压缩器

复制代码 代码如下:>>> a = [1, 2, 3, 4, 5, 6]

>>> zip(*([iter(a)] * 2))

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

>>> zip(a[::2], a[1::2])

[(1, 2), (3, 4), (5, 6)]

>>> zip(a[::3], a[1::3], a[2::3])

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

1.13 在列表中用压缩器和迭代器滑动取值窗口

复制代码 代码如下:>>> def n_grams(a, n):

... z = [iter(a[i:]) for i in range(n)]

... return zip(*z)

...

>>> a = [1, 2, 3, 4, 5, 6]

>>> n_grams(a, 3)

[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

>>> n_grams(a, 2)

[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]

>>> n_grams(a, 4)

[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

1.14 用压缩器反转字典

复制代码 代码如下:>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m.items()

[('a', 1), ('c', 3), ('b', 2), ('d', 4)]

>>> zip(m.values(), m.keys())

[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]

>>> mi = dict(zip(m.values(), m.keys()))

>>> mi

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

1.15 列表展开

复制代码 代码如下:>>> a = [[1, 2], [3, 4], [5, 6]]

>>> list(itertools.chain.from_iterable(a))

[1, 2, 3, 4, 5, 6]

>>> sum(a, [])

[1, 2, 3, 4, 5, 6]

>>> [x for l in a for x in l]

[1, 2, 3, 4, 5, 6]

>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

>>> [x for l1 in a for l2 in l1 for x in l2]

[1, 2, 3, 4, 5, 6, 7, 8]

>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]

>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]

>>> flatten(a)

[1, 2, 3, 4, 5, 6, 7, 8]

1.16 生成器表达式

复制代码 代码如下:>>> g = (x ** 2 for x in xrange(10))

>>> next(g)

0

>>> next(g)

1

>>> next(g)

4

>>> next(g)

9

>>> sum(x ** 3 for x in xrange(10))

2025

>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)

408

1.17 字典推导

复制代码 代码如下:>>> m = {x: x ** 2 for x in range(5)}

>>> m

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

>>> m = {x: 'A' + str(x) for x in range(10)}

>>> m

{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}

1.18 用字典推导反转字典

复制代码 代码如下:>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m

{'d': 4, 'a': 1, 'b': 2, 'c': 3}

>>> {v: k for k, v in m.items()}

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

1.19 命名元组

复制代码 代码如下:>>> Point = collections.namedtuple('Point', ['x', 'y'])

>>> p = Point(x=1.0, y=2.0)

>>> p

Point(x=1.0, y=2.0)

>>> p.x

1.0

>>> p.y

2.0

1.20 继承命名元组

复制代码 代码如下:>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):

... __slots__ = ()

... def __add__(self, other):

... return Point(x=self.x + other.x, y=self.y + other.y)

...

>>> p = Point(x=1.0, y=2.0)

>>> q = Point(x=2.0, y=3.0)

>>> p + q

Point(x=3.0, y=5.0)

1.21 操作集合

复制代码 代码如下:>>> A = {1, 2, 3, 3}

>>> A

set([1, 2, 3])

>>> B = {3, 4, 5, 6, 7}

>>> B

set([3, 4, 5, 6, 7])

>>> A | B

set([1, 2, 3, 4, 5, 6, 7])

>>> A & B

set([3])

>>> A - B

set([1, 2])

>>> B - A

set([4, 5, 6, 7])

>>> A ^ B

set([1, 2, 4, 5, 6, 7])

>>> (A ^ B) == ((A - B) | (B - A))

True

1.22 操作多重集合

复制代码 代码如下:>>> A = collections.Counter([1, 2, 2])

>>> B = collections.Counter([2, 2, 3])

>>> A

Counter({2: 2, 1: 1})

>>> B

Counter({2: 2, 3: 1})

>>> A | B

Counter({2: 2, 1: 1, 3: 1})

>>> A & B

Counter({2: 2})

>>> A + B

Counter({2: 4, 1: 1, 3: 1})

>>> A - B

Counter({1: 1})

>>> B - A

Counter({3: 1})

1.23 统计在可迭代器中最常出现的元素

复制代码 代码如下:>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])

>>> A

Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})

>>> A.most_common(1)

[(3, 4)]

>>> A.most_common(3)

[(3, 4), (1, 2), (2, 2)]

1.24 两端都可操作的队列

复制代码 代码如下:>>> Q = collections.deque()

>>> Q.append(1)

>>> Q.appendleft(2)

>>> Q.extend([3, 4])

>>> Q.extendleft([5, 6])

>>> Q

deque([6, 5, 2, 1, 3, 4])

>>> Q.pop()

4

>>> Q.popleft()

6

>>> Q

deque([5, 2, 1, 3])

>>> Q.rotate(3)

>>> Q

deque([2, 1, 3, 5])

>>> Q.rotate(-3)

>>> Q

deque([5, 2, 1, 3])

1.25 有最大长度的双端队列

复制代码 代码如下:>>> last_three = collections.deque(maxlen=3)

>>> for i in xrange(10):

... last_three.append(i)

... print ', '.join(str(x) for x in last_three)

...

0

0, 1

0, 1, 2

1, 2, 3

2, 3, 4

3, 4, 5

4, 5, 6

5, 6, 7

6, 7, 8

7, 8, 9

1.26 可排序词典

复制代码 代码如下:>>> m = dict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

1, 0, 3, 2, 5, 4, 7, 6, 9, 8

>>> m = collections.OrderedDict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))

>>> print ', '.join(m.keys())

10, 9, 8, 7, 6, 5, 4, 3, 2, 1

1.27 默认词典

复制代码 代码如下:>>> m = dict()

>>> m['a']

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: 'a'

>>>

>>> m = collections.defaultdict(int)

>>> m['a']

0

>>> m['b']

0

>>> m = collections.defaultdict(str)

>>> m['a']

''

>>> m['b'] += 'a'

>>> m['b']

'a'

>>> m = collections.defaultdict(lambda: '[default value]')

>>> m['a']

'[default value]'

>>> m['b']

'[default value]'

1.28 默认字典的简单树状表达

复制代码 代码如下:>>> import json

>>> tree = lambda: collections.defaultdict(tree)

>>> root = tree()

>>> root['menu']['id'] = 'file'

>>> root['menu']['value'] = 'File'

>>> root['menu']['menuitems']['new']['value'] = 'New'

>>> root['menu']['menuitems']['new']['onclick'] = 'new();'

>>> root['menu']['menuitems']['open']['value'] = 'Open'

>>> root['menu']['menuitems']['open']['onclick'] = 'open();'

>>> root['menu']['menuitems']['close']['value'] = 'Close'

>>> root['menu']['menuitems']['close']['onclick'] = 'close();'

>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))

{

"menu": {

"id": "file",

"menuitems": {

"close": {

"onclick": "close();",

"value": "Close"

},

"new": {

"onclick": "new();",

"value": "New"

},

"open": {

"onclick": "open();",

"value": "Open"

}

},

"value": "File"

}

}

1.29 对象到唯一计数的映射

复制代码 代码如下:>>> import itertools, collections

>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

>>> value_to_numeric_map['c']

2

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

1.30 最大和最小的几个列表元素

复制代码 代码如下:>>> a = [random.randint(0, 100) for __ in xrange(100)]

>>> heapq.nsmallest(5, a)

[3, 3, 5, 6, 8]

>>> heapq.nlargest(5, a)

[100, 100, 99, 98, 98]

1.31 两个列表的笛卡尔积

复制代码 代码如下:>>> for p in itertools.product([1, 2, 3], [4, 5]):

(1, 4)

(1, 5)

(2, 4)

(2, 5)

(3, 4)

(3, 5)

>>> for p in itertools.product([0, 1], repeat=4):

... print ''.join(str(x) for x in p)

...

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1.32 列表组合和列表元素替代组合

复制代码 代码如下:>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):

... print ''.join(str(x) for x in c)

...

123

124

125

134

135

145

234

235

245

345

>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):

... print ''.join(str(x) for x in c)

...

11

12

13

22

23

33

1.33 列表元素排列组合

复制代码 代码如下:>>> for p in itertools.permutations([1, 2, 3, 4]):

... print ''.join(str(x) for x in p)

...

1234

1243

1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412

3421

4123

4132

4213

4231

4312

4321

1.34 可链接迭代器

复制代码 代码如下:>>> a = [1, 2, 3, 4]

>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):

... print p

...

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))

... print subset

...

()

(1,)

(2,)

(3,)

(4,)

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

(1, 2, 3, 4)

1.35 根据文件指定列类聚

复制代码 代码如下:>>> import itertools

>>> with open('contactlenses.csv', 'r') as infile:

... data = [line.strip().split(',') for line in infile]

...

>>> data = data[1:]

>>> def print_data(rows):

... print 'n'.join('t'.join('{: <16}'.format(s) for s in row) for row in rows)

...

>>> print_data(data)

young myope no reduced none

young myope no normal soft

young myope yes reduced none

young myope yes normal hard

young hypermetrope no reduced none

young hypermetrope no normal soft

young hypermetrope yes reduced none

young hypermetrope yes normal hard

pre-presbyopic myope no reduced none

pre-presbyopic myope no normal soft

pre-presbyopic myope yes reduced none

pre-presbyopic myope yes normal hard

pre-presbyopic hypermetrope no reduced none

pre-presbyopic hypermetrope no normal soft

pre-presbyopic hypermetrope yes reduced none

pre-presbyopic hypermetrope yes normal none

presbyopic myope no reduced none

presbyopic myope no normal none

presbyopic myope yes reduced none

presbyopic myope yes normal hard

presbyopic hypermetrope no reduced none

presbyopic hypermetrope no normal soft

presbyopic hypermetrope yes reduced none

presbyopic hypermetrope yes normal none

>>> data.sort(key=lambda r: r[-1])

>>> for value, group in itertools.groupby(data, lambda r: r[-1]):

... print '-----------'

... print 'Group: ' + value

... print_data(group)

...

-----------

Group: hard

young myope yes normal hard

young hypermetrope yes normal hard

pre-presbyopic myope yes normal hard

presbyopic myope yes normal hard

-----------

Group: none

young myope no reduced none

young myope yes reduced none

young hypermetrope no reduced none

young hypermetrope yes reduced none

pre-presbyopic myope no reduced none

pre-presbyopic myope yes reduced none

pre-presbyopic hypermetrope no reduced none

pre-presbyopic hypermetrope yes reduced none

pre-presbyopic hypermetrope yes normal none

presbyopic myope no reduced none

presbyopic myope no normal none

presbyopic myope yes reduced none

presbyopic hypermetrope no reduced none

presbyopic hypermetrope yes reduced none

presbyopic hypermetrope yes normal none

-----------

Group: soft

young myope no normal soft

young hypermetrope no normal soft

pre-presbyopic myope no normal soft

pre-presbyopic hypermetrope no normal soft

presbyopic hypermetrope no normal soft

【35个Python编程小技巧】相关文章:

python 从远程服务器下载日志文件的程序

一个简单的python程序实例(通讯录)

python爬虫教程之爬取百度贴吧并下载的示例

Python 除法小技巧

Python 网络编程起步(Socket发送消息)

python 提取文件的小程序

Python 网络编程说明第1/2页

如何运行Python程序的方法

python应用程序在windows下不出现cmd窗口的办法

python线程池的实现实例

精品推荐
分类导航